高疏诧异的看了眼裹的结结实实的余少,又看到了余少,他以为对方又要死皮赖脸的凑过来,谁知道对方非但没有跟过来,在他看过去的时候,又猛然的后退了一步。
可是要说对方不要过来吧,可是却就站在不远不近的地方看着他们,说看着也不恰当,对方左看右看就是不看他们,当他们完全不注意他的时候,对方才又飞快的看他们一眼,还以为他们看不到……
殊不知这样鬼鬼祟祟的样子,十分惹人注目。
所以对方到底想做什么?又想什么鬼主意吗?
在对方又一次看过来的时候,高疏和对方对视了,发现了对方眼底的惊慌……
惊慌?他不是天不怕地不怕的吗?还会惊慌?
而且他没有必要怕他啊?
不对。
高疏看了眼身边的洛叶,早晨他敲门,洛叶完全没有反应,直到傍晚才懒洋洋的爬起来,眼睛上挂着两个明显的黑眼圈,他这是怕洛叶。
想到这,高疏又看了眼余少,发现他眼底也是青黑一片,脸色青白,穿那么厚似乎还在抖,昨天还好好的,一夜之间就病的那么重了。
想到这,他接着吃饭,而站在余少身边的水玥儿使劲掐了他一把,脸上还带着笑,用低不可闻的声音道,“你不想活了?再看下去,小心挖了你的眼睛。”
余少心里苦,他心道我也不想啊,但是我能有什么办法。还有你能不能不要靠近我!
我和你不熟!可是在水玥儿露出了真面后,他实在无法像之前一样呼来喝去,甚至想想,还觉得犹如大梦一场,而且觉得自己能活到现在,真的是幸运,不对!见识到了洛叶的威风后,他觉得昨天打翻了那个小碟后,他还活着才不可思议。
洛叶喝完了海鲜粥,揉了揉头,对余少那视而不见,“我们出去走走。”
“去哪?”
“迷宫。”
度假区有个小型的迷宫,给小孩子玩的,灌木组成的,洛叶走进去,刚好把她视线挡住,而高疏可以看到居高临下的看到整个迷宫的布局,这种植物样式的迷宫在现在已经十分普遍了。
洛叶道,“你对迷宫知道多少?”
高疏,“什么方面的?”
“什么方面都可以。”
“神话算吗?希腊神话中名匠代达罗斯为克里特岛的国王米诺斯所设计,建造于克诺索斯。这座迷宫用来囚禁他的儿子——半人半牛怪物的弥诺陶洛斯。代达罗斯巧妙地建造这座迷宫,耗尽了他所有的心血,使得在完成后他本人几乎无法从中逃脱,这应该是比较著名的神话故事。”
这是最为著名的迷宫神话故事,后来人类英雄在雅典公主的帮助下杀死了弥诺陶洛斯,成功走出了这座几乎不可能走出来的迷宫。
“现在比较著名的迷宫,有意大利皮萨尼别墅花园迷宫,澳大利亚阿什科姆迷宫,法国雷尼亚克迷宫,朗利特树篱迷宫。”
高疏本人对迷宫没有多少了解,能说出来,还是归功于他的书足够多,法国的雷尼亚克迷宫应该是世界上最大的植物迷宫,而每年的迷宫图案都不一样,每年都会有迷宫爱好者前往去挑战,高疏曾经看过一条相关的新闻,所以记住了。
洛叶道,“那你说,世界上真的有永远走不出来的迷宫吗?”
“从理论上来说,没有。”高疏谨慎的道,“迷宫有入口,也有出口,这是基本规则,只要没有时间限制,没有生存上的顾虑,是可以从里面走出来的。”
他奇怪道,“你想去走一走迷宫吗?”
“不,我喜欢设计迷宫,而不是喜欢走迷宫。”洛叶摇了摇头,“我在c大听了一位教授的讲座,让人再之前产生的一点灵感再次冒了出来。”
“可是一直没有时间去想,直到昨天晚上……我忽然有了初步的构架。”
高疏谨慎的思考了下她透露出来的内容,就听洛叶道,“知道傅里叶变换吗?”
洛叶道,“数学和物理的维度概念截然不同,在数学上,达芬奇曾经写过一句话,绘画科学开始于点,然后是线,第三个出现是是面,第四个面覆盖着的立体,在他的层次结构中,点是零维的,线是一维的,面是两维的,而空间是三维的,这可以认为是数学上的维度概念。”
这可以用坐标来体现这个概念,立体维度的坐标可以用(x,y,z)来表示,再多的变量,在z后面增加变量就好了,就像是洛叶之前说过的lie理论,高维度数学空间对数学家来说十分的司空见惯,在有限群中,甚至把“怪兽群”放到一个196883维度数学空间来进行分析考察,之前的超立方体就是纯粹的数学维度。
“而在物理学上,维度概念截然不同,物理学家在四维时空和弦理论基础上建立了他们的维度理论,根据爱因斯坦的理论,物理学上的第四维是时间维,时间和空间一起构成了一个四维连续统,我们就生活在四维空间。”
“当速度超过了光速,时间就会倒流,时空弯曲,我们可以回到过去。”
“也就说,这种理论认为时间是一条射线,无限的从点的位置延伸,会在一种特殊情况下,发生弯曲,时间是变化的。”
“可是傅里叶变化却有一种特别有意思的东西,它似乎告诉我们,时间是永远不变的。”
“我们现在所做的,所看的,所进行的对话都是已经固定下来的,我们只是按照已经设定好的程序,按照已经定好的轨迹来往前,我们的过去是固定的,我们的未来是固定的。”
高疏:“……听起来很可怕。”
而在他们身后的余少和水玥儿全懵了,两个人同时怀疑人生,对不起,他们一个字都听不懂,如果不是知道了洛叶的真身,余少都想破口大骂,孤男寡女在一起就谈这个,你是不是有毛病啊!
这纯粹是有病吧。
现在他一肚子的吐槽,可是全都不敢说出来,而且有种魔幻感,现在修仙都特别的讲究科学了?他虽然听不懂,但是不妨碍他知道爱因斯坦,这是物理吧?
科学修仙吗?还是走进修仙?
他不由的看向了水玥儿,发现她居然也一脸懵逼,发现她也听不懂,他心道,看来这也不是每个人都会的。
而两人的谈话还在继续。
“从时间轴作为参照物来观察时间,可以称之为时域,它的单位是秒,后者可以称之为频域,它的世界静止不动,所有的都是固定好的,它的基本单位是一个圆周。”
“傅里叶级数,傅里叶变换中,告诉所有学习它的人,任何周期函数,都可以看成不同的振幅,不同的相位正弦波(一个圆周运动在一条直线上的投影)叠加,学会它们,就可以同时看到一个物体在时域,和频域当中的形态变化。”
“你知道随着正弦波的叠加,可以得到什么吗?”
这个问题高疏知道,“一个无限接近于标准矩形的图案。”
一个正弦波是一个如同山峰的图案,中间凸起,而正弦波可以叠加,随着不断的叠加,正弦波中上升的部分会让本来平缓增加的曲线变的陡,而所有正弦波下降的部分又抵消了上升到最高处时继续上升的部分,所以看起来是个无限接近于标准矩形的图案。
“对,但是想要得到一个真正的矩形图案,需要无数个正弦波,所以理论上,它永远不会变成一个标准的垂直矩形。”
“如果我们用图形来演示,就是在一个无限大的坐标内,把叠加在一起无限接近于矩形的图案拆分成一个个的子量,这是会有一个比较完整的频域图谱,这些子量从另一个角度也就是并非我们直视俯视的角度来看,像是一团杂乱无章毫无规律,彼此没有联系的杂乱线条。”
“如果联系到现实世界,假设这些线条都是时间轴上整不规则的曲线,我们看着他们毫无联系,而且混乱不堪,其实只是我们观察的角度,其实所有东西都是规律的,它们并不混乱,只是我们暂且找不到他们的规律,这个观察角度称之为,人的角度。”
如果换成神的角度,或许看到的就是规律而又相互联系影响的线条,这些线条相互影响,这些子量组成了无限接近于矩形的图案,而这些时间轴上不规则的曲线组成了各种各样的“事实”。
高疏:“……继续。”
纯粹的理论他还能接上几句,可是现在牵扯到了“神”的领域,他决定只听洛叶来说。
可洛叶只是一笑,没有继续探讨这个越听越可怕的理论,而是回归了正常的普通人可以理解的领域。
这里的普通人不包括余少,也不包括水玥儿。
余少听到了这个“宿命论”,就精神一振,还有什么人的角度,神的角度,当然,具体的他还听不明白,可是却想到了一点,他倒抽了一口凉气,小声对着水玥儿道,“你们、你们能看到这玩意?世界真的没有办法改变?”
他命中注定要在昨天晚上遭遇了那么恐怖的事?是不是他什么时候死也是注定的?
可谁知道水玥儿使劲拍了他一下,“别吵!”
她是亲眼看到了洛叶半实质化的灵魂,现在听洛叶讲到这,不由的心想,这难道就是对方的感悟?为什么她听不懂?!
这到底是什么玩意?!
现在修仙都这么难了?!
作者有话要说:午安~
ps:这一章和下一章的理论,主要来源于《数学之旅》知乎文章《傅里叶分析之掐死教程》
最后,再说一遍,本文扯淡流!!理论不保证完全正确,实际上我都是根据一些理论自己扯,有时候是根据百分之二十的理论,有时候是百分之五十……感兴趣的指路专业论文。